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Abstract 
In a recent publication, we presented a novel theory based on a statistical geometric concepts which gave a 

simple analytical expression for the coexistence curves (binodals) of aqueous two-phase systems. In the present 
paper, this theory (which we term the binodal model) has been applied, with considerable success, to polymer + 
polymer and polymer + salt aqueous two-phase systems. For polyethylene glycol (PEG) + Dextran (Dex) aqueous 
two-phase systems, the binodal model gives satisfactory agreement with experiment when the molar mass ratio of 
Dex to PEG 3 cu. 4. For PEG + salt aqueous two-phase systems, where the molar mass ratio of PEG to salt is 
almost invariably large, the binodal model works well. The model also explains the influence of both temperature 
and polymer molar mass on binodals and confirms the experimental observation found for some systems that under 
some circumstances the lower-molar-mass polymer can induce phase separation at lower concentrations than the 
polymer with the higher molar mass. 
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1. Introduction 

Aqueous two-phase systems provide benign 
and non-destructive environments for biosepa- 
ration processes. Systems such as these are 
attractive in that they provide a means of sepa- 
ration which is, easy to manipulate, reliable in 
scaling-up, simple and effective in operation. A 
major objective of our recent work on aqueous 
two-phase systems is toward the establishment of 
soundly based, predictive methods for the de- 
termination of the system variables which give 
very efficient separation and purification of bio- 
macromolecules under commercial conditions. 

The prediction of the behaviour of aqueous 
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systems is a notoriously difficult problem. Some 
approaches which have been used to solve prob- 
lems associated with the formation of aqueous 
two-phase systems and/or protein partitioning 
behaviour in these systems are polymer lattice 
theories [1,2], the UNIQUAC and UNIFAC 
models [3-51, osmotic virial expansions [6], 
polymer scaling analyses [7] and the generalised 
means-spherical approximation [8]. 

Most of the protein partitioning models cur- 
rently available are applicable only to very low 
protein concentrations, but any process using 
aqueous two-phase systems which could be ap- 
plicable in an industrial situation would need to 
use high biomass loadings. We have recently 
demonstrated the feasibility of using aqueous 
two-phase partitioning to extract, from systems 
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containing biomass loadings of up to 15% (w/v), 
the commercially important intracellular en- 
zyme, penicillin acylase [9,10]. As well as intro- 
ducing the problem of an extra insoluble phase 
when, for example, the protein concentration (or 
the total biomaterial concentration) is high 
enough for protein-protein molecular interac- 
tions to contribute significantly to the thermo- 
dynamic properties of these systems, perturba- 
tions of phase behaviour must also occur. Given, 
however, the hydrophilic nature of the protein 
surface, rather than having a system with two 
phase-forming components, in effect, such a 
system would now consist of three phase-forming 
components. 

An aqueous two-phase system for protein 
separation contains at least four components, but 
molecular information on interactions between 
components can be obtained by studying some 
three-component systems, one of which is the 
aqueous two-phase system without the addition 
of biomacromolecules to be separated. Infor- 
mation of this nature is useful and applicable to 
systems containing both low and high concen- 
trations of biomacromolecules. At very low 
protein concentrations, the contribution of pro- 
tein to the formation of a two-phase system need 
not be considered since the molecular environ- 
ment of the phase-forming components before 
and after the addition of protein is essentially 
unchanged. In contrast, at high total protein 
concentration, as mentioned above, the protein 
can also act as a phase-forming polymer and so 
initiate a redistribution of the primary phase- 
forming components with consequent perturba- 
tion of the phase diagram and it is the modified 
system which now controls the partitioning of the 
protein of interest. 

In phase diagrams the axes give the concen- 
trations of the phase-forming components and a 
curve, the binodal, separates the two-phase 
region, which is distal to the origin, from the 
single-phase region lying between the axes and 
the binodal. In a three-component system 
(solvent + two solutes), for any particular pair of 
solute concentrations leading to two phases in 
equilibrium, the concentrations of the solute 
components in each phase lie at two points on 

the binodal. A line connecting these points (the 
tie-line) must (because of material balance con- 
siderations) pass through a point on the phase 
diagram which represents the imaginary concen- 
tration of the phase-forming components in the 
bulk system: this point must divide the tie-line in 
the same proportion as the ratio of the masses of 
the phases. A necessary first step in quantifying 
the partitioning of a protein is the complete 
description of the phase diagram. At low protein 
concentrations, one of the “driving forces” for 
protein partitioning can be ascribed to the con- 
centration of either of the phase-forming com- 
ponents. There are several ways to express this 
“driving force” such as the tie-line length [6] and 
the concentration difference of a phase-forming 
component between the two phases [ll]. Our 
philosophy in dealing with problems on such 
systems has been that any adequate approach 
should be (i) consistent with thermodynamics, 
and (ii) applicable to both phase-forming com- 
ponents (“1” and “2”) + water ternary systems 
and to phase-forming components (“1” and 
“2”) + water + biomolecule quaternary systems. 
As mentioned above, although the Glory- 
Huggins theory, osmotic virial expansions, UNI- 
QUAC and integral-equation approaches have 
been applied to these problems with some suc- 
cess, all have shortcoming when the complete 
calculation of phase diagrams is sought, or if 
protein distribution is to be predicted. However, 
notwithstanding the deficiencies of these ap- 
proaches some useful and quite general empirical 
relationships of phase diagrams of aqueous two- 
phase systems have been suggested recently. 

If we consider the application of the empirical 
Setchenow equation [12] (which can be related to 
osmotic virial expansions under restricted con- 
ditions [13]) to aqueous two-phase systems, we 
may write 

T 

where ki is the Setchenow salting-out coefficient 
of the ith component by the jth component, & is 
a constant accounting for the activity coefficient 
of the ith component in the coexisting phases, 
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wT(wT) and wB(wB) are the mass concentrations 
of species i (j) in the top and bottom phases, 
respectively. The correlation by Vainerman et al. 
[14] indicates that for aqueous two-phase systems 
the coefficient pi is close to zero compared to the 
term (w: - w:) and so we obtain the following 
expressions linking the compositions of the 
phase-forming components: 

T 

lnG=a,(wz-w,B) 
Wl 

(2a) 

or 

T 

In G = CYJWT - w:) (2b) 
w2 

A somewhat unexpected feature is that the 
experimental information which is available indi- 
cates that Eqs. 2a and 2b are applicable to both 
polymer + polymer and polymer + salt aqueous 
two-phase systems [ 141. Independently, Dia- 
mond and Hsu [15] obtained Eqs. 2a and 2b 
from the Flory-Huggins theory [16] and further 
compared them with a number of experimental 
results. However, the derivation used and the 
assumptions on which this is based are such that, 
at best, it could only apply to polymer + polymer 
aqueous two-phase systems and it is difficult to 
justify its use to systems containing salts. Using a 
different approach we have recently demonstra- 
ted [17] that one can also arrive at Eqs. 2a and 
2b using what we call empirical “effective” 
osmotic virial coefficients for polymer + polymer 
aqueous two-phase systems but this approach has 
similar theoretical limitations regarding its appli- 
cation to systems containing electrolytes. 

Even assuming the correctness of Eqs. 2a and 
2b, they are insufficient to describe the phase 
diagram or even the binodal, and to get this 
some further relations are needed. 

A novel approach [18], which we term the 
“binodal model,” to the description of phase 
diagrams has been made very recently using the 
concepts of statistical geometry and, as a con- 
sequence, it has been shown that most of the 
binodals used in polymer + polymer aqueous 
two-phase systems can be described by 

( PNAW, 

> 

PNA w , 
In W)210 cMj2 + (V)2~0737=o (3) 

where w210 is the effective excluded volume 
(EEV) of species 2 in the species 1 aqueous 
solution, p is the solution density, NA is Avagad- 
ro’s constant (M) 1 and (M) 2 are mean molar 
masses for species 1 and 2, and usually the 
root-mean-square average molar masses for 
polydisperse components are taken. One advan- 
tage of Eq. 3 over Eqs. 2a and 2b is that it 
describes the entire binodal using only one 
parameter which has a clearly defined physical 
meaning. An important feature of Eq. 3 is that 
Eqs. 2a and 2b can be derived from it, but the 
converse does not apply. 

It is worth mentioning that although most of 
the existing theories or semiempirical treatments 
contain a logarithmic first term, they generally 
cannot be truncated to the form of the binodal 
model [17]. 

In the present paper we outline the theoretical 
bases of our binodal model and demonstrate 
situations where this model can be applied. 
Another objective of the present work is to 
collect most of the available phase diagram data 
for both polymer + polymer and polymer + salt 
aqueous two-phase systems to (i) determine the 
experimental validity of the binodal model and 
(ii) its range of suitability for different types of 
systems, and (iii) calculate and collect “effective 
excluded volume” parameters for different sys- 
tems to guide subsequent engineering design of 
aqueous two-phase systems for bioseparation. 

2. Theoretical aspects 

A detailed description of the approach we 
have used to derive the binodal model has been 
given elsewhere [18] and in this section we 
simply outline a summary of the assumptions 
necessary to formulate this theory. We also, 
however, include some of the more mathemati- 
cal details which were not stressed in the earlier 
paper. 

Our analyses of the phase separation problem 
for polymer + polymer aqueous two-phase sys- 
tems are based on the following assumptions: 
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(i) Molecules of the same species are distrib- 
uted at random in a homogeneous phase. 

(ii) On the coexistence curve, the structure of 
the solution is geometrically saturated [18] in 
terms of the sizes and shapes of all of the 
molecules in the system. 

(iii) The existence of molecular interactions 
does not change the nature of this random 
molecular distribution and, on the coexistence 
curve, their effects are exhibited simply as an 
adjustment of the average distances between the 
unlike molecular centres. 

Assumption i can include situations where 
specific association effects at the molecular level 
are very strong if the aggregated species are 
taken to be the primary components. For exam- 
ple, for a semi-ordered liquid phase such as a 
micellar solution [19], one must regard the 
associated “polymers” as the solutes and it is 
these to which the random distribution assump- 
tion is applied. In making assumption ii, we have 
indicated that the solution structures before and 
after (or from) phase separations are different. 
Before phase separation (i.e. in the one-phase 
region), solute molecules are separated so that 
additional solute molecules can still be inserted 
into the free space which is present. At the point 
of phase separation, the solute molecules are 
now so closely packed that the solution is not 
able to accept any additional solute molecules 
and when the total solute concentration is in- 
creased, what happens is the formation of two 
geometrically saturated yet structurally quite 
different solutions. The further the system is 
from the critical point (the plait point), the more 
different are the structures of these two satu- 
rated solutions. Assumption iii recognises an 
important phenomenon which has been verified 
by computer simulations [20], viz. that molecular 
interactions are not always necessary for the 
occurrence of phase separation. 

For an aqueous solution containing two very 
soluble solutes (or indeed any other binary solute 
solution in a “good” solvent), when the steric 
hindrance of the water molecules to the solutes is 
small compared with that between the two solute 
species (under these circumstances we say the 
two solute components are “geometrically in- 

compatible”), we can regard the system as a 
pseudo-binary system. To model such a system 
we consider the size distribution of convex 
“holes” in a network of species i which could 
possibly accommodate molecules of type i. If we 
let z+ and 9 be the corresponding molecular 
number densities, cpi the probability density func- 
tion of finding holes with a volume at least V in 
the molecular centre network formed by species 
i, then it has been shown [18] that 

vi(V) dV= Ai dV I,I cP(X) h (4) 

where +&V) is a function which only depends 
on the hole size in the molecular centre network 
of species i, A,(,,,(V)dV is the conditional prob- 
ability that the infinitesimal shell of volume dV 
contains one molecular centre of species i when 
there is no molecular centre of species i in the 
volume V (see Fig. 1). According to this defini- 
tion, when q # 0, +,,,(V) dV must always adopt 
positive values and must not be a decreasing 
monotonic function, i.e. 

Using Eq. 5, we obtain 

which will be used later. Solving Eq. 4 gives 

Qt(O) 
Qi(v) = Aicol,(0) 

[I 
V * Ai(o,JV) eXP - 0 Ai h (7) I 

Fig. 1. Diagram illustrating a convex cavity of volume V in a 
network of species “i” where only single molecular centre of 
component i occupies the infinitesimal shell of volume dV 
around this cavity. 
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Substituting Eq. 7 into the following restriction 
to vi(v): 

I 
0m q(V) dV= 1 (8) 

Noting the following relation: 

hi(Ol)(x) dX 1 
V 

= -Aicol,(V) dV exp hi(O*)(x) dX C9) 1 
and Eq. 6, we get: rp,(O)lh,~,,,(O) = 1 and so Eq. 
7 becomes 

[I 
V 

Vi(V) = 4(ol)P’)exP - Ai h 1 (10) 0 

Using Eq. 10, the probability of finding intersti- 
tial spacings V adjacent to molecules of species i 
is given by 

Pe 2 V) = 1: vi(V) dV= exp[ -6 Ai h] 

(11) 
where P&J L V) is the probability of finding a 
cavity of volume at least V. The function 
Aicol,(V) may be determined by the following 
further restriction to q+(V): 

I 
m 

0 
V&(V)dV=$ 

I 

Substituting Eq. 10 into Eq. 12 gives 

02) 

(13) 

If, since in our model the molecular distribution 
is random, we consider, for guidance, the ran- 
dom spheres model where molecules are mutual- 
ly penetrable [2l], we expect: 

A,(,,,(V) = constant (14) 

and by insertion of Eq. 14 into Eq. 13, we 
determine Ai(otJ = l/q and so Eq. 11 becomes 

Pw b V) = exp(-V?) (15) 

However, molecular repulsions become ever 
more significant and the deviations from com- 

pletely random behaviour become greater as the 
distance between molecular centres becomes 
smaller. If for mathematical simplicity and for 
purposes of illustration a linear repulsion is 
assumed, i.e. 

Ai =yv (16) 

where y is a constant, then insertion of Eq. 16 
into Eq. 13 leads to Aitolj(V) = mfV/2. Corre- 
spondingly, Eq. 11 becomes 

Pw>V)=exp -$-I@~ 
( > (17) 

We conclude from this that Eq. 15 is a reason- 
able approximation to the real systems when the 
minimum hole size is relatively large and Eq. 17 
is a plausible approximation when this hole size 
is relatively small. For the particular systems 
which we are considering here, since the size of 
the cavity is at least that of the effective excluded 
volume (which is greater than the molecular size 
of either species), Eq. 15 should be a good 
approximation. 

Combination of Eq. 15 with assumption ii, for 
the pseudo-binary system i-i-0 [18] allows us to 
write: 

e-vjiOyi = Vjioq +fjio (18) 

where yio is the effective excluded volume of 
species i in the species i aqueous solution, and is 
the minimum volume in the molecular centre 
network of species i which holds an individual i 
molecule, and hi0 represents the volume fraction 
of unfilled effective available volume after tight 
packing of species i in the network of species i 
aqueous solution. 

We now define a new parameter, R, the ratio 
of molecular masses of the two phase-forming 
components, as 

(M>j 

R= (M), 09) 

Usually, for most systems of interest [e.g., the 
phase-forming components are polyethylene gly- 
co1 (PEG) + Dextran (Dex) or PEG + salt], the 
value of R is greater than unity. It should be 
noted that as R becomes large fiio approaches 
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zero, and consequently, the coexistence curves 
of most aqueous two-phase systems may be 
simply expressed as: 

(20) 

3. The use of Eq. 20 

There are usually two types of aqueous two- 
phase systems currently adopted for biosepa- 
rations of biomacromolecules, viz. polymer + 
polymer and polymer + salt systems. For 
polymer + polymer systems, the difference of the 
densities of the two equilibrated phases is so 
small that one can neglect this difference in 
modelling the phase diagram. For polymer + salt 
systems, however, this difference should be 
considered even when allowing for the ex- 
perimental inaccuracy in determining the phase 
diagram. Because of this, there are two resultant 
expressions in the application of Eq. 20 to 
aqueous two-phase systems. 

3.1. PoZymer + polymer aqueous two-phase 
systems 

Using the root-mean-square molar mass 
( (,$4,,,)) for a polydisperse species and since the 
densities along the binodal are almost the same 
(the density difference between the two phases 
of PEG + Dex systems is less than 10e5 kg me3 
[22]), we can therefore create a new parameter 
the average scaled EEV ((V*)jiO=NA(~~iO)) 
and using this, the following expression results 
from Eq. 20: 

ln (V*)210 ( ( y, M > + (v*)210 @yl), =o 
(21) 

For PEG + Dex aqueous two-phase systems, 
species 1 and 2 refers to PEG and Dex, respec- 
tively . 

3.2. Polymer + salt aqueous two-phase systems 

The coexistence of electrolytes and the non- 
ionic polymers necessarily makes the molecular 

interactions in solutions more complex and the 
assumption of a completely random distribution 
must be doubtful since one would expect some 
degree of correlation between the ions of the 
electrolyte [23]. However, the exponential law of 
Eq. 15 is still expected to be a useful approxi- 
mation for polymer molecules. We do not know 
why the approach adopted works as well as it 
does for systems containing electrolytes and for 
this reason we prefer to consider the following 
expression to be semi-empirical: 

In (V**)210 (Lw2 ) + (V**)210 (Lwl =0 
( 

> TlnS 2 > rms 1 

(22) 

In this, (V**)jiO=pZVA(~~O) is taken as the 
average scaled EEV. For PEG + salt aqueous 
two-phase systems, species 1 and 2 denotes salt 
and PEG respectively. 

Uses of Eqs. 21 and 
discussed briefly below. 

4. Results and discussion 

22 are examined and 

One of the major objectives of the present 
work is to compare our theoretical expressions 
with experimental phase diagram. 

It is true that polymers are complex molecules 
and their solution behaviour has been repre- 
sented in different ways depending on the con- 
centration regime considered. For aqueous two- 
phase systems, the concentrations of the poly- 
mers are in the “semi-dilute” region or perhaps 
approaching a crossover domain [24]. Although 
these different physical situations are not de- 
tailed in our model, the links of the binodal 
model to these have been indicated [18]. We 
have found Fig. 6 of ref. 18) that the change of 
the EEV with Dextran molar mass in PEG + 
Dex aqueous two-phase systems is marked at 
lower Dextran molar masses, but increasingly 
less marked at higher molar masses. This ob- 
servation is in accordance with the physical 
model on which a recent theoretical analysis [7] 
is based. We would expect from the assumptions 
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made in the formulation of the theory, that for 
systems containing high-molar-mass poiymers in 
the concentration region considered, the poly- 
mer molecules will form an entangled network 
rather than exist as identifiable polymer coils. 
The consequence of this is that the solution 
properties should be little iniluenced by the 
polymer molar mass at high molar masses but we 
would expect some influence at low molar mass- 
es. Within the limitations imposed by the model 
formulation it is therefore able to reflect differ- 
ent scale lengths. It is appreciated that the model 
used is oversimplified and cannot represent in 
detail all aspects of the molecular idiosyncrasies 
of all polymers. Comparisons with experimental 
information indicate that the theory is robust, 
but, undoubtedly, the EEV acts to some extent 
as a “catch-all” and must reflect, to some extent, 
“chemical” as distinct from geometric properties 
of the polymers. 

For PEG + Dex aqueous two-phase systems, 
the phase diagram data obtained by Forciniti et 
al. [25], Diamond and Hsu [26], and Albertsson 

[27] have been correlated using Eq. 21 and the 
results obtained are given in Tables l-3. It is 
clear from the information presented that the 
data from all of these sources, when the molecu- 
lar mass ratio, R, is greater than cu. 4, is 
satisfactorily represented by Eq. 21. However, 
when R is less than this value, significant devia- 
tions of experimental results sometimes are evi- 
dent. We can therefore conclude that for PEG + 
Dex aqueous two-phase systems, when R > ca. 4 
the binodal model works well. 

A feature of the results given in Tables l-3 is 
that the calculated EEVs from different sources 
but for seemingly identical PEG + Dex pairs, at 
similar temperatures (e.g., 293 and 298 K), are 
sometimes very different. Some of the variation 
may be due to differing experimental conditions 
in different laboratories but the major contribu- 
tions to the variations most probably arise from 
variations in the molar masses and polydispersity 
of the phase-forming polymers used. These var- 
iations however have a much less pronounced 
effect with PEG than with Dex. The variability 

Table 1 
Calculated effective excluded volumes ( (V*)Dcx_PEG_H20) in PEG + Dextran aqueous two-phase systems at 298 K, obtained by 
fitting the experimental data [25] to Eq. 21 

PEG + Dex aqueous systems” 102 x (VL-,,o-“,A r n R 
(kg mol-‘) 

PEG 20 000 + Dex 17b 2.354 0.865 8 0.8 
PEG 10 000 + Dex 17’ 1.344 0.902 8 1.5 
PEG 20 000 + Dex 19b 4.397 0.922 8 1.6 
PEG 6000 + Dex 17 0.806 0.948 7 2.9 
PEG 10 000 + Dex 19’ 2.630 0.962 8 3.0 
PEG 20 000 + Dex 37 7.191 0.958 8 3.3 
PEG 4000 + Dex 17 0.614 0.968 8 4.1 
PEG 6000 + Dex 19 1.393 0.988 8 5.9 
PEG 10 000 + Dex 37 4.316 0.989 8 6.2 
PEG20OOO+Dex48 9.426 0.987 8 6.87 
PEG 4000 + Dex 19 1.025 0.995 8 8.1 
PEG 6CMM + Dex 37 2.308 0.986 8 12.2 
PEG1009O+Dex48 4.934 0.961 8 12.7 
PEG 4ooO + Dex’37 1.499 0.997 8 17.0 
PEG 6000 + Dex 48 2.621 0.970 8 25.1 
PEG 4000 + Dex 48 1.781 0.977 8 34.8 

’ Root-mean-square molar masses were used as the average molar masses and, for PEG 4OCQ PEG 6CUKJ PEG 10 OW PEG 20 
000, Dex 17, Dex 19, Dex 37 and Dex 48, they were 3951,5476,10 809,20 038,15 996,32 017,66 983 and 13 657, respectively. 

’ Phase diagrams for these systems are not given. 
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Table 2 
Calculated effective excluded volumes ( (V*)DIx_PEO_H20) in PEG + Dextran aqueous two-phase systems at 277 K, obtained by 
fitting the experimental data [26] to Eq. 21 

PEG + Dex aqueous systems” 102 x WLPEG-H20) r n R 
(kg mol-‘) 

PEG 20 OCKI + Dex T40b 3.784 0.923 8 1.6 
PEG 20 000 + Dex T70b 5.447 0.952 14 2.6 
PEG 8OtXl+ Dex T40 1.832 0.977 10 3.9 
PEG 8000 + Dex T70 2.624 0.996 10 6.6 
PEG 3400 + Dex T40 0.830 0.995 8 9.2 
PEG 3400 + Dex T70 1.078 0.993 8 15.5 
PEG2OOOO+DexT500 14.6% 0.983 8 17.2 
PEG &MO + Dex T500 6.129 0.978 8 43.1 
PEG 3400 + Dex TSOO 2.279 0.991 8 101.3 

a The average molar masses of PEG 3400, PEG fXKt0 and PEG 20000 were 3400, 8000 and 20000, respectively. The 
root-mean-square average molar masses used for Dex T40, T70 and T500 were 31319, 52 654 and 344 586, respectively. 

b Phase diagrams for these systems are not given. 

of molar mass and polydispersity from different 
manufacturers and different batches is the main 
obstacle to achieving a general design approach 
to polymer + polymer aqueous two-phase sys- 
terns using parameters such as the EEV. It has 
ben suggested [17] that at the outset of experi- 
ments in which an aqueous two-phase system is 

to be used, the EEV should be measured using, 
for example, the experimentally simple “turbidi- 
ty” approach [27] to character&e the particular 
system studied. The suitability of this experimen- 
tal approach for both types of aqueous two- 
phase systems has been demonstrated [28]. It is 
possible that a series of batches of the polymers 

Table 3 
Calculated effective excluded volumes ((V’) Dcx_PEG_H2,,) in PEG + Dextran aqueous two-phase systems, obtained by fitting the 
experimental data [27] to Eq. 21 

PEG + Dex aqueous systems” lo* x (v* Dcx-PEO-H*O ) r 
(kg mol-‘) 

n R 

PEG 20 000 + Dex D17 at 293 Kb 2.722 0.894 12 1.3 
PEG 6000 + Dex D17 at 273 K 1.564 0.954 8 2.9 
PEG 6OCNJ + Dex D17 at 293 K 1.527 0.959 14 2.9 
PEG 6000 + Dex D24 at 293 K 2.069 0.993 10 5.1 
PEG 4000 + Dex D17 at 293 K 0.742 0.975 8 5.8 
PEG 6000 + Dex D37 at 273 K 3.976 0.991 10 10.4 
PEG 6000 + Dex D37 at 293 K 3.552 0.995 8 10.4 
PEG 6WO + Dex D48 at 273 Kb 5.811 0.995 10 36.0 
PEG 6000 + Dex D48 at 277 K 6.650 0.992 10 36.0 
PEG 6000 + Dex D48 at 293 K 4.967 0.987 14 36.0 
PEG 6000 + Dex D68 at 273 K 7.337 0.993 8 37.3 
PEG 6000 + Dex D68 at 293 K 6.033 0.986 10 37.3 
PEG 4000 + Dex D48 at 273 K 2.534 0.996 10 45.0 
PEG 4000 + Dex D48 at 293 K 1.932 0.989 10 47.7 

a Average molar masses for PEG 4OW, PEG 6000 and PEG 26 000 were MOO, 8000 and 17 500, respectively. Those for Dex D17, 
D24, D37, D48 and D68 were 23 tXt0, 40 500, 83 OW, 180 000 and 280 Ooo, 

b Phase diagram for this system is not given. 
respectively. 
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20 
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Dx 40000 %(w/w) 

Fig. 2. Comparison of experimental binodals [25] for PEG 
4OOSDextran (Dx) 4OCKWwater (0) and PEG 6000-Dex- 
tran 40 000-water (A) systems at 298 K with those calculated 
(-) from Eq. 21. 

obtained from a given manufacturer, might well 
be consistent in their properties. This would be 
fortunate but should always be checked. 

Calculated and experimental binodals of a 
number of PEG + Dex aqueous two-phase sys- 
tems are shown in Figs. 2-10. Without excep- 
tion, for all of the experimental data considered 
(including systems containing salt, see later), we 
find that for different pairs of phase-forming 
components of similar chemical nature, the 
greater the polymer molar mass, the greater is 
the EEV: this is consistent with the physical 
meaning of the EEV. 

From the results shown in Figs. 2-10 we find 
another important feature of the binodal model 
is that it reflects influences of both polymer 
molar mass and temperature on shifts in the 

16 

0 
0 6 10 16 20 26 30 

Dx 110000 %(w/n) 

Fig. 3. Comparison of experimental binodals [25] for PEG 
4000-Dextran (Dx) 110 000-water (0), PEG 6000-Dextran 
110 000-water (A), PEG 10 000-Dextran 110 000-water (+) 
and PEG 20 000-Dextran 110 ONI-water (A) systems at 298 
K with those calculated (-) from Eq. 21. 

0 6 10 16 20 26 30 
Dx 600000 %(w/r) 

Fig. 4. Comparison of experimental binodals [25] for PEG 
4OOO-Dextran (Dx) 500000-water (0), PEG 10 WO-Dex- 
tran 500 000-water (+) and PEG 20OOQ-Dextran 500000- 
water (A) systems at 298 K with those calculated (-) from 
Eq. 21. 

l6 F------ 
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0 6 10 16 20 26 

Dex T40 %(w/r) 

Fig. 5. Comparison of experimental binodals [26] for PEG 
3400-Dextran TM-water (0) and PEG 8WO-Dextran T40- 
water (A) systems at 295 K with those calculated (-) from 
Eq. 21. 
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Fig. 6. Comparison of experimental binodals 1261 for PEG 
3400-Dextran T70-water (0) and PEG WOO-Dextran T70- 
water (A) systems at 295 K with those calculated (-) from 
Eq. 21. 
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0 
0 6 10 16 20 26 

Dsx TSOO %(w/w) 

Fig. 7. Comparison of experimental binodais [26] for PEG 
3400-Dextran T500-water (0), PEG 8000-Dextran TSOO- 
water (A) and PEG 20@00-Dextran TSOO-water (A) sys- 
tems at 295 K with those calculated (-) from Eq. 21. 

DSI %(w/r) 

Fig. 8. Comparison of experimental binodals [27] for PEG 
6000-Dextran D37-water systems at 293 K (A) and at 273 K 
(A) with those calculated (-) from Eq. 21. 

binodal. Two empirical concepts, which have 
been established for many years and are based 
primarily on experimental observations, are (i) 

“0 6 10 16 20 26 SO 
D4S %(w/n) 

Fig. 9. Comparison of experimental binodals [27] with PEG 
400%Dextran D4Swater systems at 293 K (0) and at 283 K 
(a) and PEG 6000-Dextran D48-water systems at 293 K 
(A) and at 277 K (A) with those calculated (-) from Eq. 21. 

0 6 10 16 20 I ._ 5 

Dx 08 %(w/r) 

Fig. 10. Comparison of experimental binodals [U] for PEG 
6000-Dextran (Dx) 68-water systems at 293 K (A) and 273 
K (A) with those calculated (-) from Eq. 21. 

the higher the temperature the higher the con- 
centration of polymers needed for phase sepa- 
ration and (ii) the higher the molar mass the 
lower the concentration of polymers needed for 
phase separation (see, e.g., refs. 27, 29 and 30). 

The first of these two concepts is completely in 
accordance with the predictions of the binodal 
model in that for a given polymer + polymer 
system, if the temperature is increased, then the 
EEV necessarily will decrease, resulting in a 
consequent perturbation of the coexistence curve 
away from the axes. In other words, for a fixed 
pair of polymers at higher temperatures, higher 
concentrations of the phase-forming polymers 
are always required for phase separation. It 
should perhaps be mentioned that, because of 
experimental problems at the extremes of coex- 
istence curves, it is often difficult to delineate the 
exact relative positions of the curves (see, e.g., 
Figs. 8 and 10). 

The second of the empirical observations is 
consistent with the binodal model but is not a 
necessary condition of it. If the concentrations of 
the phase-forming solutes are expressed as mo- 
lecular number densities then one can categori- 
cally state for two binary solute systems in which 
the molar mass of one of the solutes is fixed but 
the molar mass of the other solute varies, that 
the system with the lower-molar-mass solute will 
have its coexistence curve more distance from 
the axes than the higher-molar-mass solute con- 
taining system. However, usually phase composi- 
tions are expressed using mass fraction (or a 
similar scale) and depending upon the molar 
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masses it is possible for overlap of coexistence 
curves to occur when such scales are used. The 
EEV is related to the molecular size of both 
phase-forming components. When the molar 
mass ratio of the phase-forming components is 
large, a change in molar mass of the larger sized 
species will significantly alter the EEV whereas a 
change of the smaller sized species will have a 
lesser effect on the coexistence curve. As ob- 
served in Figs. 2, 3, 4, 7 and 9, for PEG + Dex 
aqueous two-phase systems when the molar mass 
of the larger sized species (Dex) is constant, the 
experimental evidence for binodal overlap with 
PEG of varying molar masses is unclear. In 
contrast, as shown in Figs. 11 and 12, when the 
molar mass of PEG is kept constant but that of 
Dex varies, binodal overlap obviously occurs. 

As was mentioned above, changing the tem- 
perature leads to a change in the EEV and 
several examples illustrating this in polymer + 
polymer aqueous two-phase systems are given in 
Table 3. It is also possible to perturb the EEV, 
without changing the molar masses of the phase- 
forming polymers, by for example, the addition 
of a small amount of low-molar-mass additives, 
such as a salt or urea [30,31]. Changes in the 
EEV can also occur, with consequent changes in 
the phase diagrams, by derivatisation of the 
polymer(s). 

A considerable amount of high-quality and 

ao 3 

0 6 10 16 20 26 SO 
Dex 96(w/w) 

Fig. 11. Comparison of experimental binodals [U] for PEG 
6000-Dex-water systems at 298 K, where the molecular mass 
of the PEG is tied and those of Dex vary, with those 
calculated (-) from Eq. 21. Experimental results: q l=PEG 
6ooo + Dextran (Dx) 40 000 system; 0 = PEG 6000 + 110 Ooo 
system; A = PEG fXMl0 + Dextran 500 CHIO system. 

0 6 10 16 20 26 60 
Dex 96(w/w) 

Fig. 12. Comparison of experimental binodals [27] for PEG 
6000-Dex-water systems at 293 K, where the molecular mass 
of the PEG is fixed and those of Dex vary, with those 
calculated (-) from EQ. 21. Experimental results: n = PEG 
6OW + Dextran D68 system; Cl = PEG 6000 + Dextran D48 
system; 0 =PEG 6000+ Dextran D37 system; A = PEG 
6000 + Dextran D24 system. 

comprehensive data on PEG + salt systems has 
recently been reported [32] and we have treated 
these using the binodal model. The results ob- 
tained are presented in Table 4 and shown in 
Figs. 13-17. It is apparent that the binodal 
model (Eq. 22), usually gives a satisfactory 
description of the experimentally determined 
binodals of polymer + salt aqueous two-phase 
systems. The molar mass ratio restriction on the 
binodal model seldom applies and generally 
since the molar mass ratio for this type of two- 
phase system is almost invariably rather high, 
polymer molecules would tend to be close 
packed in aqueous salt solutions [18]. One of the 
clear conclusions which is evident from Table 4 is 
that for each of the salt-containing systems 
investigated, as the molar mass of the PEG 
increases, so too does the EEV. This is in 
accordance with the binodal model. It seems 
quite apparent from the information shown in 
Figs. 14-17 that for PEG + salt systems binodal 
overlaps do occur. This is the feature which was 
commented on above when polymer + polymer 
systems were considered and now, largely 
because of the great molar mass disparity be- 
tween the polymer and the salt and the variation 
in the larger sized species PEG, the non-mono- 
tonic shift of coexistence curves with polymer 
molar mass is very evident. In contrast to the 
polymer + polymer systems, where in the usual 
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Table 4 
Calculated effective excluded volumes ( (V’ * ) ,,EO_s.,,_HZ,,) in PEG + salt aqueous two-phase systems at 298 K, obtained by fitting 
the experimental data [32] to Eq. 22 

PEG + salt aqueous systems” 19’ x (V~L-H20 ) r n R 
(m’ mol-‘) 

PEG 1000 + MgSO, 1.777 0.994 8 9.1 
PEG 3350 + MgSO, 3.925 0.989 8 27.4 
PEG 8OW + MgSO, 5.500 

LB7 
10 73.5 

PEG loo0 + K,PO, at pH 8.0* 1.869 8 6.5 
PEG 8000 + K,PO, at pH 8.0b 7.400 0.975 12 52.4 
PEG 1000 + Na,CO, 1.905 0.996 10 10.4 
PEG 3350 + Na,CO, 2.489 0.998 6 31.1 
PEG 8000 + Na,CO, 8.770 0.999 8 83.5 
PEG 1000 + (NH&SO, 1.387 0.995 8 8.3 
PEG 8WO + (NH,),SO, 5.733 0.993 8 67.0 
PEG loo0 + Na,SO, 1.994 0.997 10 7.7 
PEG 3350 + Na,SO, 3.894 0.981 8 23.2 
PEG 8000 + Na,SO, 5.557 0.995 10 62.3 

o The root-mean-square-average molar masses were used for the average molar masses of PEG and for PEG 1090, PEG 3350 and 
PEG 8000 they were 1100, 3299 and 8848, respectively [32]. 

b For systems containing K,HPO, and KH,PO, the fractions of phosphate species (xK2nPo,, xKH+.o,) were determined using the 
Henderson-Hasselbach equation in association with the well documented pK, of H,PO;. The mean molar mass of the 

phosphate was obtained by (Wpho.phate = ~xZHPo,xK+.o, + Worzeo, (1 -xx+,,), where MKzHPo, and WtHIPo, are the molar 
masses of K,HPO, and KH,PO,, respectively. 

composition ranges, as the molar mass of one of 
the polymer is increased the coexistence curve 
moves towards the axes, for polymer + salt sys- 

PBOlOOO 

I 

potmaium phosphate %(w/w) 
0 10 20 80 

Sodium Carbonate %(w/r) 

Fig. 13. Comparison of experimental binodals [32] for PEG Fig. 14. Comparison of experimental binodals [32] for PEG 
lOC&potassium phosphate-water (0) and PEG 8000-potas- lOUO-Na,CO,-water (O), PEG 3350-Na,CO,-water (0) 
sium phosphate-water (A) systems at pH 8.0 and 298 K with and PEG 8000-Na,Co,-water (A) at 298 K with those 
those calculated (-) from Eq. 22. calculated (-) from Eq. 22. 

terns as the molar mass of the polymer is in- 
creased either enhanced or diminished phase 
separation can occur. At the cross-over point 

60 
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0 10 20 SO 40 SO 

Ammonium Sulphate tt(r/r) 

Fig. 15. Comparison of experimental binodals [32] for PEG 
lOOO-(NH,),SO,-water (0) and PEG 8WO-(NH&SO,- 
water (A) systems at 298 K with those calculated (-) from 
Eq. 22. 

obviously no change in phase separation occurs 
with change in molar mass. 

In the treatment of polymer + salt aqueous 
two-phase systems, the disadvantage of using 
Eq. 22 to predict the binodal is that a means of 
estimating the change of solution density along 
the binodal is needed. In order to obtain a 
simple expression for the polymer + salt aqueous 
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Fig. 16. Comparison of experimental binodals [32] for PEG 
WOO-MgSO,-water (Cl), PEG 3350-MgSO,-water (0) and 
PEG 8000-MgSO,-water (A) systems at 298 K with those 
calculated (-) from Eq. 22. 
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Fig. 17. Comparison of experimental binodals [32] for PEG 
lOOO-Na,SO,-water (II), PEG 3350-Na,SO,-water (0) 
and PEG 8O@&Na,SO,-water (A) systems at 298 K with 
those calculated (-) from Eq. 22. 

two-phase systems, a tentative empirical ap- 
proach for the present situation may be the use 
of Eq. 21. Tables 5 and 6 list the correlation of 
some PEG + phosphate binodals determined by 
Lei et al. [33] and Albertsson [27], and in these 

NA ( PVpolymer-salt ) is used to represent the appar- 
ent EEV. It can be seen that although the 
correlation coefficients are somewhat reduced 
for the data reported by Albertsson [27], the 
approach is quite satisfactory for the binodals 
determined by Lei ef al. [33]. From Table 5 it is 
apparent that for molar mass ratios greater than 
approximately 4 Eq. 21 gives satisfactory repre- 
sentations of the experimental binodals of 
PEG + phosphate systems. It would seem there- 
fore that the application of Eq. 21 to polymer + 
salt aqueous two-phase systems should be satis- 
factory if this condition is met. 

It was mentioned earlier that the application 
of binodal model to polymer + salt aqueous two- 
phase systems is semi-empirical, and there are 
some obvious theoretical difficulties. As an ex- 
ample as shown in Table 6, the influence of 
temperature on the EEV is different to that 
observed in polymer + polymer aqueous two- 
phase system in that for polymer + salt aqueous 
two-phase systems increase in temperature in- 
creases the EEV. It is our intention to study the 
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Table 5 
Calculated effective excluded volumes ( (V*)PEG_s,,I_H20) in PEG + salt aqueous two-phase systems at 277 K, obtained by fitting 
the experimental data [33] to Eq. 21 

PEG + salt aqueous systems” 10’ x (VL+“*o) r n R 
(kg mol-‘) 

PEG 400 + potassium phosphate at pH 7 0.880 0.979 8 2.7 
PEG 600 + potassium phosphate at pH 7 1.240 0.990 8 4.0 
PEG 1000 + potassium phosphate at pH 7 1.795 0.998 8 6.6 
PEG 1500 + potassium phosphate at pH 7 2.415 0.999 8 10.0 
PEG 3400 + potassium phosphate at pH 6 3.215 0.997 8 24.6 
PEG 3400 + potassium phosphate at pH 7 3.865 0.994 8 22.6 
PEG 3400 + potassium phosphate at pH 8 4.558 0.999 8 20.1 
PEG 3400 + potassium phosphate at pH 9.2 4.616 0.999 8 19.6 
PEG 8000 + potassium phosphate at pH 7 6.148 0.990 8 53.1 
PEG 20 000 + potassium phosphate at pH 7 8.375 0.997 8 132.6 

’ The nominal masses were used for the PEGS. 
Table 4. 

The average molar masses of phosphates were obtained as given in the footnote to 

behaviour of salt-containing systems in more 
detail, both from experimental and theoretical 
viewpoints. 

5. Conclusions 

Eqs. 21 and 22, which are based on a statistical 
geometrical theory, can represent both 
polymer + polymer or polymer + salt aqueous 
two-phase systems. The establishment of the 

binodal model represents a major step in the 
quantitative description of aqueous two-phase 
systems and biomacromolecular partitioning in 
these systems. In practice, given the marked 
influence of polymer polydispersity on the binod- 
als of polymer + polymer aqueous two-phase 
systems and the variation of this between manu- 
facturers and between batches, the preliminary 
determination of the parameter, the EEV, is 
recommended. For polymer + salt aqueous two- 
phase systems, the value of the EEV varies little 

Table 6 
Calculated effective excluded volumes ((V’) PEG_sa,l_H20) in PEG + phosphate aqueous two-phase systems, obtained by fitting the 
experimental data [27] to Eq. 21 

PEG + salt aqueous systems” 106 x (VL-,.I,-“,0) r n R 
(kg mol-‘) 

PEG 1540 + potassium phosphate at 293 K 2.388 0.994 8 9.7 
PEG 4000 + potassium phosphate at 273 K 3.736 0.979 8 23.8 
PEG 4000 + potassium phosphate at 293 K 4.021 0.972 12 23.8 
PEG 6CKKl+ potassium phosphate at 273 K 5.363 0.972 8 50.5 
PEG 6000 + potassium phosphate at 293 K 5.656 0.979 8 50.5 
PEG 20 000 + potassium phosphate at 293 K 6.809 0.988 6 110.4 

* The average molar masses for PEG 1540, PG 4000, PEG 6OM and PEG 20 000 were 1540, 3774, 8000 and 17 500, respectively. 
The average molar masses of the phosphate used here were obtained as given in the footnote to Table 4. 



Y. Guan et al. I 1. Chromatogr. A 668 (1994) 31-45 45 

for PEGs with molecular masses less than 10 000 
for a given salt and at a given pH, and so such 
preliminary experimentation is unnecessary. 
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